Imupharm Immune Health Onco Nutrition Heart Health Endocrine Health Joint and Bone Health Digestive Support Men's Health Women's Health Detox Support

Advanced Integrative Immunotherapy for Cancer

 

 

 

 



Pregnenolone

SUGGESTED USE: 1 or more tablets per day or as recommended by your health care professional.

Formulated to be free of allergens derived from: Gluten, yeast, artificial colors and flavors. Do not consume this product if you are pregnant or nursing. Consult your physician for further information. As with all dietary supplements, some individuals may not tolerate or may be allergic to the ingredients used. Please read the ingredient panel carefully prior to ingestion. Cease taking this product and consult your physician if you have negative reactions upon ingestion.

Contraindications: Do not take this product if you are pregnant or nursing, consult your physician for more information. This product contains the following allergen: corn.

DISCLAIMER: The information contained on this web site has not been evaluated by the FDA. It is not intended to treat, diagnose, cure or prevent any disease. Material on the Imupharm web site is provided for educational purposes only. Always seek the advice of your physician or other qualified health care provider with any questions you have regarding a medical condition, and before undertaking any diet, exercise or other health program.



PREGNENOLONE is a steroid hormone directly synthesized in the cells of the adrenal gland and in the central nervous system from cholesterol. It is a prohormone--a precursor for the body's other naturally occuring hormones, including adrenal cortisol, dehydroepiandrosterone (DHEA), estrogen, testosterone, and progesterone. (Reference 1) It serves as a vital supplement to support adrenal function, and is responsible for countless functions in the body.

Studies have found that pregnenolone not only supports adrenal function, but may also have some benefit on on cognitive function and energy levels. (Reference 2) Pregnenolone is a GABAA (receptors found in the central and peripheral autonomic nervous system) antagonist and increases neurogenesis in the hippocampus. (Reference 3)



(1) Akwa Y, Young J, Kabbadj K, Sancho MJ, Zucman D, Vourc'h C, Jung-Testas I, Hu ZY, Le Goascogne C, Jo DH, et al. Neurosteroids: biosynthesis, metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J Steroid Biochem Mol Biol. 1991;40(1-3):71-81.

Pregnenolone (P) and dehydroepiandrosterone (D) accumulate in the brain as unconjugated steroids and their sulfate (S) and fatty acid (L) esters. The microsomal acyl-transferase activity is highest in immature (1-3 weeks old) male rats. The immunocytochemical and biochemical evidence for P biosynthesis by differentiated oligodendrocytes is reviewed. The importance of P synthesis for its brain accumulation is assessed by the intracysternal injection of the inhibitor aminoglutethimide. Primary glial cell cultures convert P to 20-OH-P, PL, progesterone, 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnane-20-one (Polone). Astroglial cell cultures also produce these metabolites, whereas neurons from 17-day mouse embryos only form 20-OH-P. P and D are converted to the corresponding 7 alpha-hydroxylated metabolites by a very active P-450 enzyme from rat brain microsomes. Several functions of neurosteroids are documented. P decreases in olfactory bulb of intact male rats exposed to the scent of estrous females. D inhibits the aggressive behavior of castrated male mice towards lactating female intruders. The D analog 3 beta-methyl-androst-5-en-17-one, which cannot be metabolized into sex steroids and is not demonstrably androgenic or estrogenic is at least as efficient as D. Both compounds elicit a marked decrease of PS in rat brain. The Cl- conductance of gamma-aminobutyric (GABAA) receptor is stimulated by GABA agonists, an effect which is enhanced by Polone and antagonized by PS. Thus, P metabolites in brain as well as steroids of extraencephalic sources may be involved physiologically in GABAA receptor function. The neurosteroids accumulated in brain may be precursors of sex steroid hormones and progesterone receptors have been localized in glial cells. P and D do not bind to any known intracellular receptor. A heat stable P binding protein has been found in brain cytosol with distinct ligand specificity. A binding component specific for steroids sulfates, including Polone S, DS and PS, in the order of decreasing affinity is localized in adult rat brain synaptosomal membranes. Its relationship to the GABAA receptor is under current investigation.

(2)Vallée M, Mayo W, Le Moal M (2001). "Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging.". Brain Res Brain Res Rev 37 (1-3): 301–12. doi:10.1016/S0165-0173(01)00135-7. PMID 11744095.

Aging is a general process of functional decline which involves in particular a decline of cognitive abilities. However, the severity of this decline differs from one subject to another and inter-individual differences have been reported in humans and animals. These differences are of great interest especially as concerns investigation of the neurobiological factors involved in cognitive aging. Intensive pharmacological studies suggest that neurosteroids, which are steroids synthesized in the brain in an independent manner from peripheral steroid sources, could be involved in learning and memory processes. This review summarizes data in animals and humans in favor of a role of neurosteroids in cognitive aging. Studies in animals demonstrated that the neurosteroids pregnenolone (PREG) and dehydroepiandrosterone (DHEA), as sulfate derivatives (PREGS and DHEAS, respectively), display memory-enhancing properties in aged rodents. Moreover, it was recently shown that memory performance was correlated with PREGS levels in the hippocampus of 24-month-old rats. Human studies, however, have reported contradictory results. First, improvement of learning and memory dysfunction was found after DHEA administration to individuals with low DHEAS levels, but other studies failed to detect significant cognitive effects after DHEA administration. Second, cognitive dysfunctions have been associated with low DHEAS levels, high DHEAS levels, or high DHEA levels; while in other studies, no relationship was found. As future research perspectives, we propose the use of new methods of quantification of neurosteroids as a useful tool for understanding their respective role in improving learning and memory impairments associated with normal aging and/or with pathological aging, such as Alzheimer’s disease.

(3) Mayo W, Lemaire V, Malaterre J, Rodriguez JJ, Cayre M, Stewart MG, Kharouby M, Rougon G, Le Moal M, Piazza PV, Abrous DN. Pregnenolone sulfate enhances neurogenesis and PSA-NCAM in young and aged hippocampus. Neurobiol Aging. 2005 Jan;26(1):103-14.

Age-dependent cognitive impairments have been correlated with functional and structural modifications in the hippocampal formation. In particular, the brain endogenous steroid pregnenolone-sulfate (Preg-S) is a cognitive enhancer whose hippocampal levels have been linked physiologically to cognitive performance in senescent animals. However, the mechanism of its actions remains unknown. Because neurogenesis is sensitive to hormonal influences, we examined the effect of Preg-S on neurogenesis, a novel form of plasticity, in young and old rats. We demonstrate that in vivo infusion of Preg-S stimulates neurogenesis and the expression of the polysialylated forms of NCAM, PSA-NCAM, in the dentate gyrus of 3- and 20-month-old rats. These influences on hippocampal plasticity are mediated by the modulation of the gamma-aminobutyric acid receptor complex A (GABA(A)) receptors present on hippocampal neuroblasts. In vitro, Preg-S stimulates the division of adult-derived spheres suggesting a direct influence on progenitors. These data provide evidence that neurosteroids represent one of the local secreted signals controlling hippocampal neurogenesis. Thus, therapies which stimulate neurosteroidogenesis could preserve hippocampal plasticity and prevent the appearance of age-related cognitive disturbances.